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ABSTRACT
Dual task situations are very common in daily life. The cost of dual task conditions has been widely used by researchers and
clinicians to categorize individuals, as indicators of decline in functional capacities of older persons or people with cognitive or
motor disabilities. Moreover, the comparison between performances in single and dual task situations enables the calculation of
the dual task effect, which can be either beneficial or detrimental for the component cognitive or motor tasks. Based on results
of a previous interventional study, we defined a dual task model analysis from the evolution of the dual task effect after 12
weeks of exergaming in older adults. This approach led us to the proposal of a representation of the dual task progress (DTP).
This theorical model is sensitive to the reliability of dual task outcome measures and needs to be validated in the future. In
this viewpoint article, we begin by defining key concepts based on existing literature. We then analyse additional data from a
previous study, leading to the step-by-step development of a new model. Finally, we provide the DualTaskProgress free and
open-source software that enables calculation and graphical representation of the DTP.
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Dual task (DT): historical background, paradigm, and
definition

W e will systematically discuss “dual task” as cognitive-motor dual task,
which involve performing both a cognitive task and a motor task simul-

taneously. Sequential cognitive-motor dual task also exist according to some
authors [1, 2, 3, 4], as well as motor-motor dual task, which we will not address.
To simplify reading, the acronym “DT” will consistently refer to “simultaneous
cognitive-motor dual task”.

Introduced by Abernethy et al. in 1988 [5] and subsequently studied by
others [6], the dual task (DT) paradigm was initially used to study changes
in walking patterns [7]. Gait and postural control require minimal at-
tentional resources in healthy population, allowing another concurrent
task to be added, typically a cognitive task. However, in certain clinical
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conditions, performing this second task can be challenging or even im-
possible, potentially leading to deterioration in the performance of either
(or both) the cognitive or motor task [8]. The concept of the DT cost
was then introduced, initially representing the deterioration of cognitive
or motor performance when performed in DT compared to single-task
(ST) conditions [9]. The DT cost has been widely used by researchers
to categorize individuals, and has been perceived as indicative of func-
tional decline (e.g. reflecting the risk of falls) [10]. While conceived as a
measure of deterioration in task performance, DT cost may also signify
improvement in performance, such as those observed following a targeted
intervention [11]. The calculation of the DT cost requires the evaluation
of each task in DT and ST condition as follows [12]:

DT cost =
(DT − ST)

ST
× 100

This can be illustrated with the motor performance of an adult taking
a Timed-up-and-go test under ST (6s) and DT condition (9s) (i.e., with
concurrent arithmetic task). The motor DT cost would then be equal
to (9−6)

6 × 100 = 33%. Considering the direction of the TUG test
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score, this motor DT cost value means that carrying out the TUG test
with a concurrent arithmetic task results in a reduction of the motor
performance of 33% compared to TUG test alone for this person. In other
words, it takes 50% more time to realize the TUG in DT compared to ST.

Figure 1 Patterns of cognitive-motor interference - DT effect model
(DTE) proposed in Plummer et al. 2013 [13].

Positive values for DTE indicate that performance improved in dual task
condition relative to single-task performance. Negative values for DTE
indicate that performance deteriorated in dual task condition relative to
single-task performance. The different combinations illustrate interfer-
ence, facilitation and tradeoff scenarios between cognition and gait.

The cognitive-motor interference (CMI) concept and as-
sociated models

The concept of cognitive-motor interference (CMI) is an explanatory
model of DT cost that highlights deterioration, or mutual facilitation
strategies. Various models of CMI have been proposed since its initial
description in 1994 by Pashler et al. [14], recently reorganized [9]. These
models include: 1) the cross-domain competition model [15, 16], which is
a volume-dependent model based on an individual’s attentional resource
capital; 2) the bottleneck theory [17], a time-dependent model based on
task coordination and attention-sharing capacity; 3) the task prioriti-
zation model [18], relying on individual-specific adaptive strategies; 4)
the time-sharing hypothesis [19], which suggests that the deteriorated
performance in DT is due to additional processing steps not present in
any of the separate ST, and; 5) the cross-talk model [20], a model of re-
ciprocal facilitation in the case of similar neural networks. These models
are widely recognized, developed, and commonly used. For brevity, these
models are only mentioned in the present paper; the included references
may be consulted for more detailed descriptions.
In these different theoretical models, and especially in the crosstalk model,
the consequence of the DT is not necessarily associated with performance
deficits [20]. Plummer et al. 2013 synthesized [21] and illustrated [13]
these different scenarios with patients after a stroke. According to these
authors, the DT situation can lead to either deterioration or improvement
of cognitive and/or motor performance, schematized by 8 different sce-
narios (Figure 1). The additional task may induce mutual facilitation, but
this would be less frequent than deterioration. Using the exact same calcu-
lation equation, the DT cost is now referred as the dual task effect (DTE)

[9], which includes the potentially beneficial consequence not expressed
by the term “cost”, as illustrated in the “tradeoff” and “mutual facilitation”
quadrants. Tradeoff refers to a compromise where one cognitive or motor
performance is sacrificed for the other. Mutual facilitation, on the other
hand, denotes a scenario where both performances are enhanced, in oppo-
sition to mutual interference. It is worth noting that the “no interference”
central area presented in the model is not defined as a percentage of the
cognitive or motor DTE.

Figure 2 Cognitive and motor DTE at T1 (1) and T2 (2) (N = 34).
DTECog: cognitive dual task effect. DTEMot: motor dual task effect.

This figure illustrates the cognitive and motor dual task effect at T1 and
T2 for our 34 participants. It demonstrates the influence on performance
when performing identical cognitive and motor tasks under single and
dual task conditions. Each point displays a participant, positioned at the
intersection of the disparity between their single and dual task cognitive
performance (DTECog), and between their single and dual task motor
performance (DTEMot). To enhance clarity, we have extended the x ticks
to 1000%. Consequently, a decrease in motor performance of 10% and
cognitive performance of 20% when transitioning to dual task conditions
will be depicted as 10% and 200%, respectively, causing the data points to
move further apart.

CMI patterns are neither fixed nor constant and depend on various fac-
tors, including individual characteristics (especially cognitive and motor
abilities) [21], the nature [8, 22], difficulty, and novelty [23] of primary
and secondary tasks [24] or the “first strategy” adopted by the person
(cognitive or motor). The “first strategy” refers to the preferential domain
prioritized by the person. For instance, a motor first strategy involves pri-
oritizing motor tasks over others (minimizing potential distractions), of-
ten to preserve physical integrity and ensure safety (e.g., reducing the risk
of falls). This is commonly observed in situations like “stop talking when
walking”. The way in which the test is administered, and more particularly
the instructions regarding the task to prioritize, also influence the strategy
adopted by the patient [8, 21]. Overall, the DTE is mostly observed as a
CMI in neurological diseases [25] and aged populations [26], who present
with deteriorated performance in DT conditions. In addition, the DTE is
frequently calculated only for one of the two components (i.e., cognitive or
motor) [27] while a lot of tasks include both motor and cognitive resources
in the daily life. Therefore, it is important to test the relevance of this
theoretical DTE model to highlight the different strategies for DT. This
is particularly true given the significant heterogeneity of the literature.
Over the past decade, numerous studies have used DT as the primary in-
tervention and/or outcome, whether in posture or walking, across various
training programs for healthy or pathological older adults. In the past 10
years, 16 studies can be cited (among many others) exposing the extent to
which methods have been varied, with heterogeneous and sometimes con-
troversial results [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].
This can be explained by the numerous parameters influencing the DTE
mentioned earlier. Thus, the precise definition of individuals’ profiles or
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their progression becomes challenging within the complexity of dual task-
ing. Taken together, this complexity complicates the personalization of
rehabilitation interventions, as goals and methods depend on individuals’
characteristics.

Figure 3 DTE progress after 3 months of DT training (N = 34). Four
different scenarios: decreased DTE for motor, increased DTE for cog-
nitive abilities (A); decreased DTE for both cognitive and motor abil-
ities (B); increased DTE for both cognitive and motor abilities (C);
increased DTE for motor, decreased DTE for cognitive abilities (D).

This figure illustrates the progression of each 34 participants from T1 to
T2 regarding cognitive and motor dual task effects (DTECog and DTEMot),
called dual task progress (DTP). In other words, it represents the vector
−−→
DTP going from DTET1 (DTECog T1: DTEMot T1) to DTET2 (DTECog T2:
DTEMot T2). The number of participants per panel was A = 6, B = 5, C
= 6, D = 17. 5 vectors are overlapping in panel D and cannot be shown
properly all at once.

Findings from previous experimental research

Amongst the previous studies mentioned, an intervention was recently
conducted [42] in which DT training was provided through an exergame
consisting of 30 sessions lasting 30 minutes each, spread over 12 weeks,
to 39 participants with an average 84.6 ± 8.5 years old age. The par-
ticipants had no established diagnosed motor or cognitive impairments.
Among other outcome measures, their mental inhibition performance
was assessed using the number of errors in the Stroop test [44], and their
postural control assessed using the speed of oscillation of their center
of pressure (CoP speed) in standing balance [33]. The Plummer model
was developed for postural control, and the advantage of this task com-
pared to walking is that it provides a highly standardized setting that is
easy to reproduce in clinical practice. These two tests were conducted
in both ST and DT conditions (see the study protocol for more details
[45]). Among other observations, after three months of exergaming, cog-
nitive improvements were observed, with a 37% cognitive performance
increase and no significant difference in motor performance in DT in
34 participants (see the study for more details [42]). This overall trend
of cognitive improvement and motor maintenance appears to reflect a
“cognition-first” strategy, to be confirmed or refuted by studying the DTE.
The DTE on cognitive (DTECog) and motor (DTEMot) performances were

calculated before (T1) and after training (T2) for each participant. This
computation entailed determining the number of errors made in the
Stroop test and the difference in the CoP speed depending on whether
the tests were conducted in ST or DT. The graphical representation of
these performance variations is possible for each subject using the 8 sce-
narios from the Plummer model [13], providing information about the
DTE profile for individuals at T1 (Figure 2.1) and T2 (Figure 2.2): mutual
interference, motor or cognitive compromises, or mutual facilitation.
According to this representation, it seems that there is a recentering of
the points towards the central non-interference area. A more precise
analysis of this phenomenon requires a study of the movement of each
point, i.e., an analysis of the displacement between “baseline point” (T1)
and “post-training point” (T2) to observe the impact of the training on
DTE. This is represented in Figure 3; the axes are truncated for clarity, but
the units, axis proportions, and points represented are strictly the same as
in Figure 2. Four types of DTE modifications can be distinguished from
these graphical representations. In one case, participants had a decrease
in DTE for both cognitive and motor abilities, translating to the reduced
deterioration (i.e. improvement) of cognitive and motor performance in
DT comparted to ST (Figure 3.B). Conversely, some participants exhib-
ited an increase in DTE for both cognitive and motor abilities (Figure
3.C). Finally, some had a decrease in DTE for their cognitive abilities
while simultaneously increasing DTE for their motor abilities (Figure
3.D), or vice versa (Figure 3.A).
All behaviors can be observed, represented by vectors with varying magni-
tudes and directions. Some participants even change their DTE quadrant,
transitioning from interference to mutual facilitation, for example. Again,
the general observation seems to be a trend toward a return to the center
- which cannot be represented for reasons of legibility – with a high inter
participants variability.

Proposal for representing the dual task effect progress
over time (DTP)

The variable response to DT training in terms of differences in cognitive
and motor performance in ST and DT leads us to propose an illustration
of the significant variability of DTE progress over time (DTP) (Figure 4).
Inspired by the 8 scenarios in the Plummer model [13], this model offers
a dynamic representation of behavior performance.
This proposal allows us to consider all scenarios: whether the progress is
an increase or decrease in the difference between performance in ST and
DT situations in both cognitive and motor performances. On the other
hand, does the DTE increase or decrease in the participant over time in
the cognitive and motor domains? It is important to note that the model
is standardized and centered in this illustration, but movements can occur
from any starting point to any endpoint on the diagram. What matters
here are the magnitude and direction of the vector, characterizing the
progress of the DTE (i.e., DTP). This can be coupled with the individual’s
starting and ending quadrants, characterizing their DTE as proposed by
Plummer et al. All scenarios of initial profile, progress, and final profile
are possible. We present all the assessment, calculation and representation
methods used to derive the DTP based on cognitive and motor assessments
in Table 1. We also provide the DualTaskProgress free and open-source
software that enables calculation and graphical representation of the
DTE and DTP (https://dualtaskcalculator.streamlit.app/) (Figure 5).
It is worth noting that even if the model was constructed using the
combination of Stroop test as cognitive task, and static postural control
as motor task, it is applicable in any scenario of combination (evaluation,
test orientation, etc.).

Eur Rehab J. 2025 DOI: 10.52057/erj.v5i1.58 3

https://dualtaskcalculator.streamlit.app/


Gallou-Guyot et al.

Table 1 Assessments and calculations for dual task effect (DTE) and dual task progress (DTP)

T1 T2

Evaluation

Single task cognitive CogST T1 CogST T2

Single task motor MotST T1 MotST T2

Dual task cognitive CogDT T1 CogDT T2

Dual task motor MotDT T1 MotDT T2

Calculation

Cognitive dual task effect DTECog T1 =
(CogDT T1−CogST T1)

CogST T1
× 100 DTECog T2 =

(CogDT T2−CogST T2)
CogST T2

× 100

Motor dual task effect DTEMot T1 = (MotDT T1−MotST T1)
MotST T1

× 100 DTEMot T2 = (MotDT T2−MotST T2)
MotST T2

× 100

Cognitive dual task progress DTPCog = DTECog T2 − DTECog T1

Motor dual task progress DTPMot = DTEMot T2 − DTEMot T1

Graphic representation

Dual task progress
−−→
DTP =

−−−−−−−−−−−−−→
(DTPCog; DTPMot) =

(
DTECog T1 DTECog T2; DTEMot T1 DTEMot T2

)
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Figure 4 Representation model of the DTE progress (DTP cognitive / motor). DTP: dual task progress; CMI: cognitive-motor interference. As for
the Plummer et al. 2013 model [13], 8 different scenarios exist.

This figure illustrates all scenarios possible regarding the dual task progress of individuals, written as DTP (cognitive / motor). As an example, let’s
consider the performance of one person taking a Stroop test (percentage of correct answers) and a static postural control test (CoP displacement), both
realized independently and together (single-task and dual task conditions), before (T1) and after (T2) dual task training. The values obtained are:

T1 T2
Stroop ST 0.9 1
CoP ST 11 11
Stroop DT 0.7 0.9
CoP DT 13 12
In this example, the training is efficient on every parameter in this person: the percentage of correct answers during Stroop is increased both in single
and dual task conditions, and the CoP displacement is decreased in single task conditions. We can then calculate the dual task effect at T1 and T2:

T1 T2
Cognitive DTE −22% −10%
Motor DTE −18% −9%
In this example, the person is impacted on both cognitive and motor performances in dual task compared to single-task condition, with a decrease in the
percentage of correct answers during Stroop test, and an increase of the CoP displacement during postural control. Now we can estimate the dual task
progress:
Cognitive DTP 55%
Motor DTP 50%
The dual task effect seems to decrease for both cognitive and motor performance. In other words, the person seems less impacted when dual tasking after
training. Altogether, we can describe this person as in a mutual interference scenario before and after training, and with a mutual decrease of CMI,
written DTP +/+. In a graphical illustration, this person would appear as a vector starting and ending in the bottom-left quadrant, with an up-right
direction.
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Figure 5 Automatic representation of DTP, as well as initial and final DTE. DTE: dual task effect. DTP: dual task progress.

This is the results automatically computed by the free and open software dual taskProgress available here: https://dualtaskcalculator.streamlit.app/ (the
data is fictitious and serves as an example only).
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Discussion

In this study, the Plummer et al. 2013 analysis model of the DT [13]
was confronted with the results obtained from a previous experimental
study to assess the effect of 12 weeks of exergaming on the cognitive and
motor function of older adults [42]. The main result of the initial study
was an improvement in cognitive function, in ST and DT. The progress
of the DTE (i.e., DTP) was then calculated, and an overall movement
of individuals towards the non-interference area was observed, with all
different vectors. Based on these different scenarios, an improved model
for discerning patient’s strategies during the DT has been proposed: the
DTP (Figure 4).
The primary advantage of this model is its ability to profile the effects of
DT training according to individual strategies. The reasoning is similar to
that of the force-velocity profile for muscular power training [46]: what
type of training targets cognitive or motor aspects more? What are the
responses of participants based on their characteristics? Initially, studying
intervention programs according to the observed trends would allow for
their characterization. In our study [42], the observed benefits appear to
be primarily cognitive with an improvement in cognitive functions in the
ST and in the cognitive performance in the DT. This training can then be
considered relevant or not, depending on whether one targets cognitive
or motor functions in DT within a comparable sample.
Secondly, the initial profile of participants based on the modified Plum-
mer model [13] can be characterized: are they in a situation of interference,
facilitation, or trade-off, in terms of cognition or motor performances?
Coupled with rehabilitation goals, this should help determine the pri-
ority axes for each individual, such as giving cognitive prioritization
through instructions during DT training for patients with motor facilita-
tion trade-offs. Almost every action in daily life involves DT; therefore,
it is of crucial importance to enable individuals to carry out their ac-
tivities autonomously. Finally, studying the response of participants to
interventions based on their characteristics may potentially allow the
identification of response patterns and even threshold values for effects.
Finally, to make the use of this DTP with initial and final DTE profiling
more accessible, we have provided the dual taskProgress free and open-
source software (https://dualtaskcalculator.streamlit.app/) (Figure 5).
Nevertheless, the notion of threshold value is crucial. Firstly, it is essential
to determine the level of variation in DTP corresponding to a progression
to know whether it is useful to train an individual in DT. Secondly, the
notion of CMI remains vague: what percentage of difference between
performance in ST and in DT corresponds to an interference situation?
In other words, what does the central non-interference zone correspond
to? It is likely that the answer to this question depends on the clinical
significance of the combined cognitive and motor tests, but also on both
the activity and the person concerned. This unknown minimal clinically
important difference [47] values for DT effect have been raised since 2015
[48], and to the best of our knowledge, they have not been resolved since.
All this can profoundly modify DT evaluation and intervention strate-
gies in the future. We can imagine that the answer to these questions of
threshold value and clinical significance could, in the future, be indicated
by the characteristics of the DTP vector.
It is important to highlight several limitations to our proposal. The first is
the small number of observations in our experimental study. It is therefore
difficult to conduct secondary statistical analyses, such as assessing the
reliability of postural data between the beginning and end of acquisition,
examining the relationship between response quantity and correctness to
unveil underlying strategies, and performing cluster analyses to define
typical profiles. Nevertheless, all profiles are represented in our model,
so our reduced sample size appears to be representative. The second
limitation is that our proposed model is theoretical and depends heavily
on the reproducibility of cognitive and motor measurements in ST and
DT. This reliability is highly influenced not only by the individual [21]

and task [8, 22, 23, 24] characteristics, but also by the prioritization of the
task, dictated, among other things, by the instructions given [8, 21]; and
beyond, their respect, which is difficult to ensure in a DT situation. In
our study, the instructor gave no task prioritization during instructions
to allow the expression of preferential strategies, although this is a known
factor influencing postural performance [49, 50].
The choice of cognitive and motor tasks combined is also a key point. On
the one hand, it is difficult to envisage “pure” cognitive or motor tasks
(e.g. even in cognitive performance tests the subject must use fine motor
skills to indicate their response). On the other hand, DT situations imply
a black box area: it is difficult to know whether the effect of cognitive
and motor tasks combined is equal to the combination of their isolated
effects [3]. Questions then arise about the choice of tests to isolate and
combine, which must be sufficiently 1) difficult to detect potential CMI
while avoiding a floor effect; 2) sensitive to change therefore reliable and
reproducible; 3) repeatable without causing any learning effect, and; 4)
added or incorporated [51], 5) simple to modulate, making it possible to
more effectively simulate ecological conditions, such as sending a text
message while standing [52]. Finally, the notion of effect size, transfer of
benefits, but above all clinical significance are rarely discussed regarding
DT, although these points are essential to justify the relevance of an in-
tervention. All these aspects will need to be substantiated or refuted by
future studies to validate this model, but also strengthen our knowledge
and understanding of DT assessments and interventions.
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